If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8t^2+9t+2=0
a = 8; b = 9; c = +2;
Δ = b2-4ac
Δ = 92-4·8·2
Δ = 17
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(9)-\sqrt{17}}{2*8}=\frac{-9-\sqrt{17}}{16} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(9)+\sqrt{17}}{2*8}=\frac{-9+\sqrt{17}}{16} $
| x^2+5x-6.25=0 | | 1/4=2/y | | 9x=x^2+x | | 2x+5=-39-5x | | -4(6+7x)=-192 | | 3.5x+4=6x-1 | | (100-y)+9=81 | | 2x=6=3x-8 | | 2=2/y | | 3(-2x-8=-24 | | (x-30)/5=-0.7 | | 2y+1÷3=y-1÷2 | | -4(-3x-5)=80 | | 3(2t+4)=10t-8 | | 1/3x=-6/1/6 | | 4=-2x=+26 | | -6(-6-7x)=498 | | 4(x=1)=3(x-2) | | 0.09=0.12*3.0/x | | 1/3x=-66/1 | | 0.09=0.12x3.0/x | | 7(-9-3x)=63 | | 24/y=17/51 | | 7x2-70x+175=0 | | ⁶+1.5x=-12 | | -9+x/2=11 | | y/24=17/51 | | X^3-2x^2-5x=7 | | -10+7x=-x-106 | | y/45=17/51 | | 5(2x−11)=2(x−12)−41 | | 1+4x=6x+23 |